

EMA302B

PRELIMINARY DATA SHEET

22-26 GHz Medium Power MMIC

- 22-26 GHz BANDWIDTH
- +28.0 dBm TYPICAL OUTPUT POWER
- 15 dB ± 1.5 dB TYPICAL POWER GAIN
- TWO STAGE, INPUT PARTIALLY MATCHED, OUTPUT MATCH OFF CHIP
- 0.3 MICRON RECESSED "MUSHROOM" GATE
- Si₃N₄ PASSIVATION
- ADVANCED EPITAXIAL HETEROJUNCTION PROFILE PROVIDES EXTRA HIGH POWER EFFICIENCY, AND HIGH RELIABILITY

Chip Thickness: 75 ± 13 microns All Dimensions In Microns

SYMBOL	PARAMETERS/TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
F	Operating Frequency Range	22		26	GHz
P _{1dB}	Ouput Power at 1dB Gain Compression		28		dBm
Gss	Small Signal Gain		15		dB
PAE	Power added efficiency at 1dB gain Compression		24		%
VSWR in	Input VSWR		2.5:1		
VSWR out	Output VSWR		3.0:1		
Ids1/Ids2	Drain Supply Currents for 1 st & 2 nd Stages		120/240		mA
Vdd	Power Supply Voltage		6	8	V
Rth	Thermal Resistance (Au-Sn Eutectic Attach)		18		°C/W

ELECTRICAL CHARACTERISTICS¹ ($T_a = 25$ ^OC)

Note: 1. Specifications are based on device mounted in application circuit.

D.C. characteristics for 1st & 2nd FETs follow those of EPA080A and EPA160A, respectively.

MAXIMUM RATINGS AT 25^oC

SYMBOLS	PARAMETERS	ABSOLUTE ²	CONTINUOUS ³	
Vds	Drain-Source Voltage	12V	8V	
Vgs	Gate-Source Voltage	-8V	-3V	
Ids1/Ids2	Drain Current	Idss	260 mA / 520 mA	
Igsf1/Igsf2	Forward Gate Current	40 mA / 80 mA	7mA / 14 mA	
Pin	Input Power	25dBm	@3dB Compression	
Tch	Channel Temperature	175°C	150°C	
Tstg	Storage Temperature	-65/175°C	-65/150°C	
Pt	Total Power Dissipation	7.5 W	6.3 W	

Note: 2. Exceeding any of the above ratings may result in permanent damage.

3. Exceeding any of the above ratings may reduce MTTF below design goals.

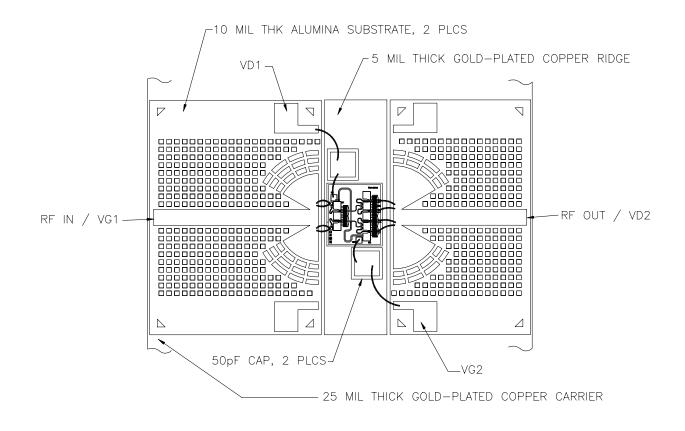
PRELIMINARY DATA SHEET

22-26 GHz Medium Power MMIC

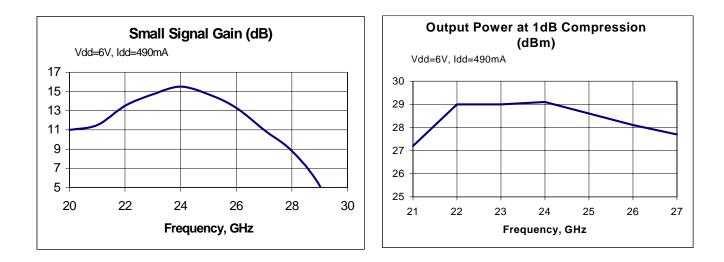
S-PARAMETERS (CHIP WITHOUT EXTERNAL MATCHING CIRCUIT)										
FREQ	S11	8V, 1/2 Idss			S22					
(GHz)	MAG ANG	MAG	ANG	MAG	ANG	MAG	ANG			
1	0.955 -72.5	0.396	-138.9	0.000	177.5	0.019	-164.0			
2	0.959 -110.2	6.670	107.4	0.001	73.5	0.155	-66.5			
3	1.046 -126.7	10.324	-37.5	0.001	172.1	0.307	-100.9			
4	1.061 -145.3	6.669	-15.9	0.004	165.1	0.346	-102.5			
5	1.075 -156.4	15.100	-72.7	0.009	143.1	0.686	-101.5			
6	0.916 -164.1	11.585	-154.3	0.010	100.1	0.754	-147.9			
7	0.913 -163.5	5.883	172.1	0.007	95.3	0.536	-152.7			
8	0.925 -164.5	3.726	154.9	0.007	103.4	0.484	-147.5			
9	0.926 -165.4	2.660	142.4	0.009	108.3	0.484	-143.2			
10	0.933 -165.4	2.109	133.0	0.005	100.8	0.517	-139.2			
11	0.939 -165.7	1.747	123.3	0.006	115.3	0.543	-138.2			
12	0.938 -164.6	1.520	114.7	0.007	117.3	0.571	-139.3			
13	0.936 -164.4	1.372	106.1	0.008	131.5	0.598	-140.6			
14	0.935 -165.7	1.278	97.5	0.008	121.1	0.631	-141.3			
15	0.934 -167.8	1.229	88.1	0.008	120.0	0.649	-142.0			
16	0.933 -168.4	1.249	79.2	0.008	104.3	0.679	-143.5			
17	0.924 -169.2	1.272	68.3	0.007	111.8	0.695	-147.6			
18	0.910 -172.3	1.358	56.3	0.010	84.6	0.743	-150.3			
19	0.895 179.7	1.486	43.5	0.006	91.2	0.767	-147.5			
20	0.868 171.0	1.688	28.1	0.006	87.5	0.797	-145.3			
21	0.809 171.2	2.027	10.4	0.006	89.1	0.835	-154.2			
22	0.713 164.0	2.606	-13.9	0.004	73.0	0.881	-156.3			
22.5	0.613 162.1	3.032	-30.7	0.004	63.4	0.895	-159.4			
23	0.473 164.8	3.459	-51.3	0.002	66.1	0.923	-162.8			
23.5	0.347 -176.7	3.728	-76.5	0.003	121.7	0.926	-166.6			
24	0.400 -147.1	3.618	-103.8	0.007	133.1	0.922	-169.1			
24.5	0.558 -139.4	3.175	-129.8	0.009	122.1	0.897	-170.7			
25	0.684 -141.3	2.647	-152.3	0.012	114.1	0.874	-169.7			
25.5	0.764 -145.0	2.135	-171.9	0.012	99.9	0.861	-169.7			
26	0.810 -147.9	1.708	170.0	0.014	90.0	0.879	-169.4			
27	0.891 -153.0	1.142		0.014		0.870	-165.1			
28	0.929 -156.3	0.750	113.7	0.016	84.5	0.851	-163.6			
29	0.956 -156.5	0.502	91.7	0.019	81.6	0.839	-162.0			
30	0.968 -155.1	0.338	78.3	0.026	64.0	0.852	-163.2			
31	0.975 -152.8	0.228	52.3	0.018	49.3	0.846	-160.7			
32	0.981 -153.0	0.157	31.8	0.013	54.7	0.856	-158.2			
33	0.983 -154.1	0.118	14.7	0.012	57.3	0.902	-157.0			
34	0.988 -153.9	0.113	-20.8	0.012	48.1	0.772	-160.7			
35	0.983 -154.0	0.035	-18.1	0.011	78.3	0.879	-157.1			
36	0.988 -155.5	0.025	-38.4	0.007	85.2	0.881	-157.3			
37	0.997 -158.4	0.023	-53.2	0.007	107.8	0.867	-158.0			
38	1.007 -157.6	0.006	112.6	0.007	107.0	0.862	-163.6			
39	1.007 -157.0	0.000	165.9	0.009	89.1	0.851	-172.9			
40	0.981 -154.9	0.002	-101.3	0.008	56.0	0.871	-172.9			
-+0	5.561 104.9	0.010	101.0	0.000	50.0	0.071	111.3			

Note:

The data included 0.7 mils diameter au bonding wires:


2 input wires, 10 mils each; 4 output wires, 12 mils each.

EMA302B


PRELIMINARY DATA SHEET

22-26 GHz Medium Power MMIC

TYPICAL APPLICATION CIRCUIT

TYPICAL APPLICATION PERFORMANCE CHARACTERISTICS

PRELIMINARY DATA SHEET 22-26 GHz Medium Power MMIC

APPLICATION HINTS

The device should be die attached with Gold-Tin eutectic. Epoxy die attach is not recommended. Thermocompression bonding of .7 mil to 1 mil diameter gold wire is recommended.

The EMA302B is partially input matched. Some input match and the output match must be provided off-chip. This allows the use of optimal materials for matching networks to minimize loss, and provides for flexibility to optimize the match for the application frequency. Typically the bond wire inductance will form part of the matching network, so bond wire lengths must be controlled and repeatable.

The sources of the transistors are directly via-hole grounded. A negative voltage is required to bias the gates of the transistors. The gate voltage for the input stage must be provided at the RF input bonding pad, and the drain current for the output stage must be provided through the output bonding pad. Appropriate bias networks must be provided off chip. Typically a quarter wave microstrip line or bond wire will suffice. Adequate DC blocking and bypassing must also be provided. A series resistance of about 50 ohms is recommended in the gate DC bias circuit of each FET to limit gate current and suppress low frequency oscillations. The drain bias circuits should be well bypassed down to MHz frequencies to prevent oscillations. Some isolation should be provided between the two drain circuits at GHz frequencies to prevent oscillations. Although there is some bypassing on chip of the VD1 and VG2 terminals, additional bypass capacitors, placed close to the chip, are recommended.

The gate and drain power supplies should be sequenced to turn on the negative gate voltage before the positive drain voltage is applied. Turning on the full drain voltage before the gate voltage can cause excessive power dissipation or destructive oscillations.